If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+44x-480=0
a = 1; b = 44; c = -480;
Δ = b2-4ac
Δ = 442-4·1·(-480)
Δ = 3856
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3856}=\sqrt{16*241}=\sqrt{16}*\sqrt{241}=4\sqrt{241}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(44)-4\sqrt{241}}{2*1}=\frac{-44-4\sqrt{241}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(44)+4\sqrt{241}}{2*1}=\frac{-44+4\sqrt{241}}{2} $
| 2(2x-4)+8=4x-2(-2+x) | | 3(2x=5)=8x+31 | | 3x+8+3x+7+3x=4x+5+3x+3x | | 6x+5=104-3x | | 0,5x+0.5x=x+1 | | 15x-6=11x+42 | | 2y-5(4y-4)=-2-3(2-y) | | 7-4w=9+3(8-2w) | | 6/5x=-22 | | Z2-10z+30=2 | | 3(x1)=-2(x-2) | | 2(y-3)=y=6+y | | 15500=c+.30(15500) | | 100+-2y+40+2y+40=180 | | 3(x+1=-2(x-2 | | 2x-15x=12 | | 2(7x+9)-8=14x+10 | | 7x-(6x-1)=5 | | 100+-2y+40=180 | | 30=2•x | | 175x+1+-1+151x=26 | | 9v+10=9 | | 1/4y-1=4 | | 10-8x=10-4x | | 8a^2-14a=0 | | 6n-9=n+3 | | (-10)=-14v+14v | | 6x+2=-6x+50 | | 2(x+7)=2(3x+11) | | 16=18y | | -6x+2=-6x+50 | | 20−4x=−12 |